
Introduction 

In contemporary medical engineering industry, one

of the key problems of development of methods, appara�

tuses, and devices for optical spectroscopy of biological

tissues is the compilation of effective computation algo�

rithms providing maximal accuracy and reliability of

determination of initial optical properties of the object of

interest from experimental data [14, 18]. Optical proper�

ties of biological tissues can be determined from radiation

fluxes measured experimentally by solving inverse prob�

lems of scattering [11], which employ different methods

of description of radiation propagation medium. In turbid

light�scattering biological media (most biological media

are turbid [22]), numerical models of transition theory

and light�scattering in turbid media should be used [8,

20]. The models have a limited number of solutions.

Therefore, approximate solutions are often used for prac�

tical purposes in photometry of turbid media. For exam�

ple, flux Kubelka–Munk (KM) approaches are widely

used in the practice of noninvasive spectrophotometry,

because they are simple and illustrative. Moreover, the

KM models allow the final calculation equations to be

derived in explicit analytical form [8, 12, 17, 18, 21�24].

In terms of transition theory and KM models, internal

optical properties of turbid media are completely charac�

terized by linear optical extinction and scattering coeffi�

cients. The linear optical extinction and scattering coeffi�

cients are determined coefficients of differential equa�

tions describing the model. 

In optics, the KM models are purely photometric

and phenomenological models based on heuristic princi�

ples providing separation of radiation field into discrete

rectangular fluxes. The principles also support the validi�

ty of linear equation of energy balance for each flux in

medium element [2, 4�8, 24]. In the simplest case, two

one�dimensional flux KM models are considered. Such

model represents one�dimensional radiation propagation

medium with two oppositely directed fluxes F+(x) and

F–(x) [8, 13, 24]. Because this model is photometric

(energy) and one�dimensional, it disregards wave proper�

ties of radiation. In this case, the classical KM model is

described by two coupled linear differential equations of

the first order [8]: 

dF+(x)/dx = –(K + S)F+(x) + SF–(x)

dF–(x)/dx = (K + S)F–(x) – SF+(x), (1)

in general case, for K ≠ 0 the solution is:

F+(x) = C1e
–αx + C2e

αx; F–(x) = C1A–e–αx + C2A+eαx,  (2)

where C1 and C2 are integration constants determined

from boundary conditions; K and S are linear (transport)

extinction coefficients and radiation scattering by medi�

um element dx, respectively; α = (K(K + 2S))1/2; A+ =

(K + 2S + α)/(K + 2S – α); A– = 1/A+. Calculation of

transport coefficients is the task of the inverse problem of

biomedical optics, particularly in the practice of noninva�

sive medical spectrophotometry [14].

The disadvantages of the KM model are uncertain

area of application and low accuracy [8]. Low accuracy is

particularly significant for the problem of development of

computation algorithms for spectrophotometric medical

diagnostic devices. For example, a branch of modern

noninvasive spectrophotometry, optical oxihemometry

(tissue oximetry) is a method of measurement of concen�

tration of hemoglobin fractions in blood using their spec�

tra [9]. The measurements are noninvasive and transder�

mal, using properties of backscattered and transmitted

radiation in biological tissues with further calculation of

blood extinction coefficients in different spectral ranges.
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Calculated values are compared with tabular values of

spectral extinction coefficients for model solutions of

whole hemolyzed blood verified using accurate methods

of laboratory spectrophotometry [28]. These methods are

based on spectrophotometry of dilute solutions of blood

and Bouguer’s law: 

F(x) = F0⋅e–µax,                             (3)

where F0 is incident light flux; F(x) is measured light flux

passed through the cuvette; µa is blood solution extinction

coefficient (solutions of hemoglobin fractions); х is light

path length in the cuvette (usually 1 cm). 

In laboratory spectrophotometry light scattering in

the cuvette is neglected because of low blood concentra�

tion in solutions. This allows use of Eq. (3) in direct

determination of µa of a solution. In noninvasive spec�

trophotometry of biological tissues, light scattering in the

tissue cannot be neglected. This makes the calculation of

µa and respective computation algorithms more sophisti�

cated (e.g., algorithms based on Eqs. (1)). This raises the

problem of correspondence between the transport

extinction coefficient K determined from the KM model

using inverse algorithms and parameter µa of the Bouguer

law.

This problem has been discussed in [4, 8, 12, 13, 16].

Equation (4) derived in [25] is widely cited in the litera�

ture and used in practice: 

K ≈ 2µa.                                  (4)

The accuracy of the standard two�flux KM approach

was estimated to be 80�85% [12]. 

Analysis of the literature [5, 7, 13, 16] shows that this

problem remains unsolved. It was shown at Vladimirskii

Moscow Regional Scientific�Research Clinical Institute

(Moscow, Russia) that the accuracy of the KM approach

for some particular cases (ideal scattering, single scatter�

ing) can be increased by accurate measuring of transport

coefficients of Eq. (1) using actual optical and physical

properties of medium element ∆х [7, 13, 23, 26]. For sin�

gle scattering the following equation was derived:

K = µa.                                   (5)

This equation is obviously valid for vanishingly small

scattering. This suggests that the accuracy of other flux

single scattering KM approaches is higher provided that

actual optical and physical properties of medium ele�

ments are taken into account in Eq. (1) [5]. The goal of

this work was to consider the problems of accuracy and

reliability of the procedure for determination of optical

per�unit�length properties of light�scattering biological

tissues and media in noninvasive medical spectropho�

tometry. The problem of correspondence between the

transport extinction coefficient K determined from KM

model and parameter µa of the Bouguer law is also con�

sidered. 

Basic Model Problem and Its Solution 

The model of one�dimensional scattering medium is

a layer of thickness H0 with non�reflecting (crumbly) bor�

ders. This layer is exposed from the left to a light flux F0

(Fig. 1).

Let the linear extinction coefficient be µa. Scattering

of the medium is simulated by infinitely thin plane

reflecting borders (heterogeneities r1, r2, ..., rn). These

borders reflect incident radiation with reflection coeffi�

cient R and transmit radiation with coefficient (1 – R).

Let the heterogeneities be spread uniformly at distance h;

the first and the last heterogeneities are at distance h/2

from the external borders of the layer. This model is a

good approximation of biological tissue, provided that the

number of heterogeneities is sufficiently large.

Such models have long been known in physics and

optics as pile models [27]. In contrast to the Stokes prob�

lem, which considers a pile of thick plates, infinitely thin

reflecting heterogeneities included in one thick plate are

considered in this work. In contrast to the Stokes prob�

lem, reflection from external medium is neglected,

because the borders are considered crumbly1.

A modified pile model was selected because the radi�

ation field distribution in an n�layer pile can be derived

rigorously using simple photometric equations. Let us

consider exponential attenuation of fluxes F+(х) and

F–(x) along their path between heterogeneities and radi�

ation reflection and transmission at the borders of the

heterogeneities. The resulting distribution of radiation

field inside and outside the pile can be used in the KM

model. 

Let local frame of references be introduced for each

interval i at x > h/2 between heterogeneities: zi(zi ∈ [0,

h]), where i = 1, 2, 3, ..., n is the number of hetero�

geneities to the left of the interval (Fig. 2). For each i�th

interval between heterogeneities, the fluxes F+
i(zi) and

F–
i (zi) can be calculated from Eq. (3) as: 

1 Crumbly external borders correspond to coarse surface of biological

tissue [15] or surface of powdered materials [5]. Reflection from such

surfaces is negligible as compared to back�scattered radiation. For

one�dimensional models the term “crumbly external border” is arbi�

trary; it is used in this work for the sake of illustration.
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F+
i(zi) = F+

i(0)⋅e–µazi; F–
i (zi) = F–

i (0)⋅eµazi,        (6)

where F+
i(0) and F–

i (0) are unknown values of fluxes at the

left end of the interval. The values are determined for flux

coupling at the ends of the intervals. At the total number

of heterogeneities and intervals n = N, an additional 2N

values of border fluxes F+
i(0) and F–

i (0) should be found.

Coupling conditions are derived from laws of radia�

tion transmission and reflection at the interface between

the media and addition of unidirectional fluxes (Fig. 2):

F+
i(0) = F+

i – 1(h)⋅(1 – R) + F–
i (0)⋅R

F–
i – 1(0) = F+

i – 1(h)⋅R + F–
i (0)⋅(1 – R),           (7)

where F–
i – 1(h) = F–

i – 1(0)⋅e–µazi at 1 < i ≤ N;

F+
i – 1(h) = 

F+
i – 1(0)⋅e–µah at i > 1

F0⋅e–µah/2 at i = 1 (first heterogeneity).

Because flux from the right is absent, the closing

condition for F–
i = N(0) is:

F–
i = N(0) = F+

i = N(h)⋅R⋅e–µah.                   (8)

Solution of Eqs. (7) and (8) with respect to 2N

unknown fluxes F+
i(0) and F–

i (0) is reduced to solution of

a set of 2N linear algebraic equations [19], which is rather

simple. 

The fluxes at external (crumbly) borders of pile (total

back�scattered flux Fbs and transmitted flux Fτ) after cal�

culation of F+
i (zi) and F–

i (zi) from Eq. (6) can be deter�

mined from: 

Fbs = F–(0) = F0⋅R⋅e–µah + F–
i = 1(0)⋅(1 – R)⋅e–µah/2,

Fτ = F+(H0) = F+
i = N(h)⋅(1 – R)⋅e–µah/2,         (9)

where F0 is external radiation flux incident to the pile

model from the left.

The solution of the problem using the KM method

requires explicit solutions of Eq. (1) using actual optical

and physical properties of the model: µa, R, N, and H0.

These solutions cannot be found phenomenologically

because even if Eqs. (4) and (5) are valid, a priori expres�

sion for S is problematic [13]. A more rigorous approach

is based on derivation of all expressions. 

Let the set of simultaneous equations (1) be recast as: 

dF+(x)/dx = –β1F+(x) + β2F–(x)

dF–(x)/dx = –β1F–(x) – β2F+(x). (10)

Fig. 1. Model representation of one�dimensional scattering medium.

Fig. 2. Local frame of references and determination of fluxes in the

i�th pile layer.

layer i�1 layer i
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Consider the explicit expression for radiation trans�

formation coefficients β1 and β2 with respect to parame�

ters µa, R, N, and Н0 of the pile model and solution of

Eqs. (10), (6), (9) for fluxes Fbs and Fτ. For the sake of

simplicity consider Gurevich equations [6] for Fbs and Fτ

in two�flux approximation2: 

Fbs = F0⋅P⋅(1 – e–2LH0)/(1 – P2e–2LH0);

Fτ = F0⋅e–LH0⋅(1 – P2)/(1 – P2e–2LH0),         (11)

where L = (β1
2 – β2

2)1/2; Р = (β1 – L)/β2. Regardless of

layer thickness (Н0) and external flux (F0), parameter:

[1 + (Fbs/F0)
2 – (Fτ/F0)

2]/[2(Fbs/F0)] = J = const,  (12)

is invariable, i.e., it is a photometric invariant typical of

medium element ∆х. Because Eqs. (11) and (12) are valid

for any layer of any scattering medium, it is safe to sug�

gest that they are valid for our model H0 = h with only

one heterogeneity. A layer of medium with one hetero�

geneity in the middle is shown in Fig. 3. Expressions for

Fbs and Fτ can be derived using parameters µa, R, N, and

H0. Introduction of mean density of heterogeneities

gives:

µρ = N/H0,                               (13)

at h = 1/µρ for photometric propagation of radiation flux�

es in one layer with one heterogeneity: 

Fbs = F0⋅R⋅e–µa/µρ; Fτ = F0(1 – R)⋅e–µa/µρ.       (14)

Let Eq. (11) be identical to Eq. (14) for similar radi�

ation fluxes. Replacing in Eq. (11) H0 by h = 11/µρ and

eliminating F0 in the left and right parts of the equations,

we obtain a set of two simultaneous algebraic equations

with two variables β1 and β2. Expressions for β1 and β2 can

be easily derived: 

(15)

where ω = [1 – (1 – 2R)⋅e–2µa/µρ]/2.

Dependence of transport coefficients in Eq. (10) on

actual optical and physical properties of medium is not

obvious a priori. For β1 this dependence is not analogous

to β1 = (K + S) in Eq. (1):

β1 = kµa + β2,

where k is any numerical coefficient, because it follows

from Eq. (15) that: 

β1 = [ω⋅e2µa/µρ⋅β2]/R.

Equation (15) can be compared to expressions

derived in [7, 13, 23, 26]. For medium with µa = 0 an

exact expression was derived [26]: 

β1 = β2 = βm = µρR/(1 – R).               (16)

For Eq. (15): 

limβ1 = limβ2 = βm,
µa→0       µa→0

in the absence of absorption, Eq. (15) tends to Eq. (16).

Single scattering equations derived in [7] can be recast

as: 

β1 = µa – µρ⋅ln(1 – R),

β2 = R⋅e–µa/µρ⋅[2µa – µρln(1 – R)]/[1 – R⋅e–2µa/µρ].   (17)

2 Strictly speaking, Gurevich equations differ from initial differential

Eqs. (1) and (10). However, the solution of Eq. (11) for fluxes Fbs and

Fτ is identical to the solution of Eq. (10) for a general system of flux

equations.

Fig. 3. A layer of medium with one heterogeneity in the middle.
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This is consistent with Eq. (15) in the absence of

absorption. 

The set of simultaneous equations (10) and Eq. (15)

can be solved similarly to Eq. (2) and set of simultaneous

equations (1) with parameters:

α = L = (β1
2 – β2

2)1/2;

A+ = [β1 + β2 + α]/[β1 + β2 – α] and A– = 1/A+. (18)

Integration constants C1 and C2 in Eq. (2) are found

from boundary conditions: 

F+(0) = F0 and F–(Н0) = 0.                 (19)

The radiation field distribution inside and at the bor�

ders of the model medium can be calculated by solving

the set of simultaneous equations (10), Eqs. (2), (15),

(18), and (19). 

Numerical Examples and Discussion 

Let us consider numerical examples. The field of

unit radiation F0 = 1 for model medium with various

parameters is shown in Fig. 4. The parameters are: N = 3,

Н0 = 1.5 cm; R = 0.4; µa = 0.5 cm–1. In calculations the

following equations were used: Eqs. (6)�(9) and KM

method equations (10), (15), (18), and (19). Results of

the single scattering (SS) approximation based on Eqs.

(10) and (17) and KM classical model were considered

for comparison using a priori relationships: 

β1 = µa + β2; β2 = βm = µρR/(1 – R).         (20)

Vertical lines indicate three heterogeneities in the

medium. Radiation flux distribution in this model is

piecewise continuous (stepwise) with indefinite deriva�

tives in breaking points of the first order. Therefore, the

KM approach has no accurate solution regardless of

medium parameters, because this method operates with

fluxes with definite first and second derivatives.

According to [3], if N is large (N → ∞), any piecewise

continuous function would tend to a smooth function.

Therefore, the KM functions are reduced to a smooth

function. Solution of Eq. (15) gives accurate values of

backscattered and transmitted fluxes, i.e., for fluxes Fbs

and Fτ measured experimentally. The difference is maxi�

mal for Fbs. Therefore, if approximation and/or model are

selected incorrectly, optical properties of the medium are

reconstructed from Fbs with maximum error. 

Let us consider calculation error of Fbs as function of

optical properties of the model medium. The ratio of

fluxes Fbs to accurate value Fbs for different approxima�

Fig. 4. Field of unit radiation F0 = 1 for model medium with parameters: N = 3, Н0 = 1.5 cm; R = 0.4, µa = 0.5 cm–1; exact solution (solid

line); model solution using Eqs. (10) and (15) (circles); SS approximation using Eqs. (10) and (17) (rectangles); classical KM method using

Eqs. (10) and (20) (triangles).
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tions and optical properties of medium is shown in Fig. 5.

Calculation was made for the semi�indefinite layer (H0 →
∞). The SS approximation of Fbs using Eqs. (10), (15),

and (17) and classical KM method using Eqs. (10) and

(20) together with Eqs. (6)�(9) were used. As expected,

the ratio of flux calculated using Eqs. (10) and (15) and

the result of accurate photometric calculation was 1 (error

is absent). Other approximations give error increasing

with R, µa and decreasing with µρ. Generally, the error

could be up to 20�30%. 

The solution of the set of simultaneous equations

(10) and Eq. (15) gives the exact value of flux Fbs over all

range of parameters µa, R, N, and H0. Therefore, a priori

separation of β1 into two independent coefficients K and S

is not correct for initial KM models (1). This is true for the

general transition equation. The classical transition equa�

tion a priori can be separated into two parameters µa and

µs, where µs is a linear scattering coefficient similar to S

[1, 2, 8]. True optical properties of medium elementary

element were discussed in [2]. It follows from Eq. (15) and

the pile model that scattering and absorption of radiation

in the medium elementary element cannot be divided into

two independent processes. Eq. (15) at R < µa/µρ < 1 for

β1 can be divided into two independent parameters:

β1 = µa + Rµρ ≅ µa – µρln(1 – R),           (21)

which is similar to Eq. (17). Equation (4) is doubtful.

Solution of the general transition equation was not com�

pared in [25] with the solution of a set of simultaneous

equations (1). Solution of the set of simultaneous equa�

tions (1) was compared with solution of 22�flux model,

and Eq. (4) was solved approximately. The KM model (1)

at R → 0 or µρ → 0 is reduced to the Bouguer law (3).

Equations (15) at R → 0 give: 

β1 = µa; β2 = 0.                           (22)

If Eq. (4) is valid regardless of medium scattering,

the KM model (1) in the absence of scattering gives twice

larger exponent of the Bouguer law (3) than the transition

equation, which is doubtful. 

Thus, the set of simultaneous equations (10) in com�

bination with Eq. (15) give a more substantiated result.

Coefficients β1 and β2 in Eq. (10) are effective optical

parameters (single scattering approximation (17), scatter�

ingless approximation (22), approximation (16), etc.).

Reconstruction of actual optical properties of the medi�

um from measuring data Fbs in computation algorithms of

diagnostic devices requires standard determination of β1

and β2 and solution of the set of simultaneous equations

(15). The set of simultaneous equations (15) for different

models is written differently. 
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Fig. 5. Ratio between approximate and accurate values of Fbs for different approximations and optical properties of medium. Calculation

for semi�indefinite layer: SS approximation using Eqs. (10) and (17) (dashed line); classical KM method using Eqs. (10) and (20) (solid

line).
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The set of simultaneous equations (15) is widely dis�

cussed in the literature on biomedical optics. Similar

expressions were derived in [12, 18, 21, 22]. In contrast to

set of simultaneous equations (15), these expressions were

derived in the invariant form rather than explicitly like

Eq. (12). Using correlation between coefficients 

β1 = β2⋅J,                                 (23)

which can be easily derived from Eq. (15) due to the fol�

lowing equation3

J = (ω⋅e2µa/µρ)/R,                          (24)

Eq. (1) was substituted into Eq. (23) together with 

β1 = K + S; β2 = S, 

in [18, 21, 22].

This substitution gave the erroneous expression 

K = S(J – 1).

However, this expression would be valid for the

model considered in this work if Eqs. (21) and (5) were

valid. 

Let us consider Eq. (23). A similar expression was

derived in [10]. For optical tomography this expression

simplifies the problem of the inverse task to one inde�

pendent variable. It follows from Eq. (23) that this

expression may have a broader meaning. 

Conclusion 

In the transition theory and KM flux models based

on heuristic initial differential equations, it is somewhat

incorrect to postulate for the general case of any model

medium that the first coefficient in the right part of the

equations represents separated parameters µa and µs (K

and S). This causes errors in calculation of direct prob�

lems and calculation of backscattered light flux and

reconstruction of optical properties of medium from

measured data. Reconstruction of actual optical proper�

ties of medium from measuring data in computation algo�

rithms of diagnostic devices requires standard determina�

tion of various parameters and solution of the set of

simultaneous equations (15). Calculation of transport

coefficients is the task of the inverse problem of biomed�

ical optics, particularly in the practice of noninvasive

medical spectrophotometry. 
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